Product Description

About Factory 

With more than 18 years’ histiory, we are a professinal manufacturer for drop forged products such as forged chain (X348 X458 X658 X678 X698 F100 F160), scraper chain (10160, 14218, 14226, 142N), conveyor trolley (X348, X458, X678, XT160), and drive chain (X348, X458, X678), and so forth standard moulds of chain. 

Besides, we can also produce as per your drawing or sample, special link chain, pusher, pin and plate, according to customers’ unique requirements.

Product Description

1) Material: Alloy steel, 40Cr, 42CrMo and so on.
2) Types: Standard types, X348 X458 X678, and so on. (Or as per your drawing)
3) Process: Moulding→Forging→Polishing & Blasting→Fine machining→Heat treatment→Blasting→Inspecting & testing→Packing

Product Show
 

Technical Data
 

Model Dimension Weight (Kg) Material Hardness Working Load (KN) Limit Load (KN)
P T C S F R D
10160B 101.6 24 36 13 14 6 14 0.32 20CrMnTi Surface HRC56-64°    
Depth 0.6-1.2mm
18 100
10160 101.6 30 36 13 14.5 9 14 0.36 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 21.6 120
14218 142 42 50 19 20.5 11 25 1.15 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 48.6 270
14226 142 62 50 28 30 15 25 1.75 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 61.2 340
2571 200 66 60 30 32 18 30 2.8 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 72 400
26014 260 70 75 31 33 20 34 5.2 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 135 750
142N 142 43 50 19 22 12.5 25 1.2 40Cr Quench HRC36-44° 75.6 420
150D 142 42 50 19 20.5 11 25 1.15 40Cr Quench HRC36-44° 75.6 420
MG20 200 70 50 27 29 17 35 3.78 40Cr Quench HRC36-44° 144 800
MG20B 200 70 50 27 29 17 30 3.82 40Cr Quench HRC36-44° 140.4 780
MG20C 200 70 50 27 29 17 28 3.85 40Cr Quench HRC36-44° 122.4 680
MS32 200 42 50 20 22 12 25 1.4 40Cr Quench HRC36-44° 75.6 420
MS55 200 80 70 35 38 25 28 4.36 40Cr Quench HRC36-44° 138.6 770
3006 200 65 70 30 33 24 32 3.6 40Cr Quench HRC36-44° 160.2 890
MS63 250 70 80 30 33 20 32 4.93 40Cr Quench HRC36-44° 147.6 820
S16 100 30 27 15 16 8 14 0.3 40Cr Quench HRC36-44° 16 88
S20 125 34 33 17 18 8 17 0.37 40Cr Quench HRC36-44° 19.4 108
S25 160 48 39 23 25 13 20 1.28 40Cr Quench HRC36-44° 55.8 310
S30 142 46 49 22 23.5 14 25 1.3 40Cr Quench HRC36-44° 91.8 510
Z16 100 40 35 18 20 12 17 0.4 40Cr Quench HRC36-44° 32.4 180
Z20 125 50 46 24 26 15 20 0.67 40Cr Quench HRC36-44° 59.4 330
Z20D 125 52 60 24 26 16 26 1.15 40Cr Quench HRC36-44° 82.8 460
Z25 160 58 55 28 30 18 25 2.25 40Cr Quench HRC36-44° 82.8 460
Z25D 160 66 64 29 31 22 28 2.6 40Cr Quench HRC36-44° 120.6 670
Z30 142 64 50 29 30.5 18 25 1.8 40Cr Quench HRC36-44° 111.6 620

Products & Testing Equipments
 

Products Application


Packing & Delivery
 

Why Choose Us?

1. We are engaged in chain industry over 15 years with rich market experience. We keep improving production techniques. All the products have longer working life and have passed the market test.

2. We can design the correct chains with high quality material, good abrasion resistance, good corrosion, high strengthen and etc as per your request or the chain application.

3. We are the chain manufacturer; you can directly purchase the product from us with low price and high quality.

4. We have a professional team for international trade, they have abundant experiences and are always ready to solve problems for customers. So you have nothing to worry about.

5. We have the long-term cooperative forwarder who can give us the lowest freight. And it can help you to save the freight. What’s more, for the FCL, we will design the packages as per the container sizes with the largest capacity to save the shipping cost for both of us.

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Mining Equipment, Agricultural Machinery, Coating, Spraying, Mining, Slaughtering, Assembly
Surface Treatment: Polishing
Structure: Combined Chain
Material: Alloy
Type: Cranked Link Chain
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

How do you calculate the required length of a bush chain?

The length of a bush chain is determined by the distance between the sprockets or pulleys it needs to span. To calculate the required length, you can follow these steps:

1. Measure the distance between the centers of the sprockets or pulleys where the bush chain will be installed. This is known as the “center distance.”

2. Determine the number of chain links required. The number of links depends on the pitch of the bush chain, which is the distance between adjacent pins. The pitch is typically specified by the chain manufacturer.

3. Divide the center distance by the pitch of the chain to calculate the number of chain links needed. Round up to the nearest whole number to ensure proper engagement of the chain with the sprockets.

4. Multiply the number of chain links by the pitch to obtain the actual length of the chain required.

Keep in mind that the calculated chain length is a starting point and may need to be adjusted during installation. It is recommended to provide some additional slack in the chain to accommodate any tensioning or adjustment requirements.

It’s important to refer to the manufacturer’s specifications and guidelines for the specific bush chain you are using, as different chain types and designs may have variations in calculating the required length.

bush chain

How does a bush chain contribute to overall system efficiency?

A bush chain contributes to overall system efficiency in several ways:

1. Power transmission: Bush chains are designed to efficiently transmit power from the driving source to the driven machinery or equipment. They have high tensile strength and can effectively transfer rotational motion, allowing for the efficient transfer of power from the motor or engine to the intended application.

2. Load-bearing capacity: Bush chains are capable of handling heavy loads and are designed to withstand the stresses associated with transmitting power in industrial applications. By efficiently transferring the load, they minimize power losses and reduce the need for additional components or systems.

3. Smooth and reliable operation: Bush chains are constructed with precision-engineered components that work together to provide smooth and reliable operation. They have low friction between the bushings and pins, reducing energy losses and minimizing wear and tear. This results in improved overall system efficiency.

4. Minimal maintenance requirements: Bush chains are designed to operate with minimal maintenance. They have self-lubricating capabilities, reducing the need for frequent lubrication. This not only saves time and resources but also ensures consistent performance and extends the chain’s lifespan.

5. Flexibility and adaptability: Bush chains can be customized and adapted to suit specific application requirements. They are available in various sizes, pitches, and configurations, allowing for easy integration into different systems. This flexibility enhances system efficiency by providing the optimal chain solution for the specific application.

Overall, a properly selected and maintained bush chain contributes to the overall efficiency of a system by minimizing power losses, reducing wear and tear, and providing reliable and smooth operation. It ensures effective power transmission and load-bearing capacity, resulting in improved productivity and reduced downtime.

bush chain

What are the main components of a bush chain?

A bush chain consists of several key components that work together to enable efficient power transmission. The main components of a bush chain include:

1. Bushings: Bushings are cylindrical components with a hollow bore that fit into the chain links. They provide a low-friction interface between the chain pins and the link plates, allowing smooth rotation and reducing wear.

2. Pins: Pins are cylindrical metal rods that connect the inner plates and outer plates of the chain links. They pass through the bushings and provide the rotational movement of the chain. The pins are hardened and precisely machined to withstand the loads and provide durability.

3. Link Plates: Link plates are flat metal plates that are connected by the pins. They form the main structure of the chain and transmit the tensile forces. The link plates are typically made of high-strength steel and are designed to withstand the applied loads.

4. Rollers: Some bush chains feature rollers that are located between the link plates and the bushings. These rollers allow smoother engagement with sprockets or other mating components, reducing friction and enhancing the chain’s performance. Rollers also help to maintain proper chain tension.

5. Retaining Clips or Rivets: Retaining clips or rivets are used to secure the pins in place and prevent them from rotating within the link plates. They ensure the integrity of the chain assembly and maintain the proper alignment of the components.

6. Lubrication: Lubrication is crucial for the proper functioning and longevity of a bush chain. It helps to reduce friction, minimize wear, and prevent corrosion. Lubrication can be applied through various methods, such as oil bath, oil drip, or periodic lubrication.

These components work together to provide reliable power transmission in bush chain systems. The precise design and construction of each component contribute to the overall strength, durability, and efficiency of the chain.

China Hot selling China Factory of Industrial Steel Forging Chain with Machinery Parts and Bucket Transmission Elevator Conveyor Roller Bush Forged Chain Link in Cement Industry  China Hot selling China Factory of Industrial Steel Forging Chain with Machinery Parts and Bucket Transmission Elevator Conveyor Roller Bush Forged Chain Link in Cement Industry
editor by CX 2023-07-28